- A+
初一下册补习
推荐选择简单学习网!想要知道一个网校好不好,课程讲得怎么样,最好的方法就是去试听他们的课程,一般的机构都会有试听课程的,像简单学习网可以免费试听课程20小时,试听过课程后,好不好自己心里就有数了。
重心是三角形三边中线的交点,三线交一点可用燕尾定理来证明。
相关学习资料:
三角形的重心
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1 X2 X3)/3,(Y1 Y2 Y3)/3);空间直角坐标系——横坐标:(X1 X2 X3)/3 纵坐标:(Y1 Y2 Y3)/3 竖坐标:(Z1 Z2 Z3)/3
5.重心是三角形内到三边距离之积最大的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
如图,在△ABC中,AD、BE、CF是中线
则AF=FB,BD=DC,CE=EA
∵(AF/FB)*(BD/DC)*(CE/EA)=1
∴AD、BE、CF交于一点
即三角形的三条中线交于一点
其实考试中不会单独的出现关于三角形的重心问题,而是综合图形知识要领,这就需要大家准确的分析了。

我的微信
关注我了解更多内容
目前评论: