高中英语课程辅导

  • A+

高中英语课程辅导

可以考虑简单学习网,高中视频培训,同步教材视频,名师授课,精讲重点难点考点补习,在线报名,轻松提分,大幅提高孩子学习效率、效果!

初高中视频网课试听
简单学习网课程视频试听

相关学习资料:

一、选择题

1.据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2010年的冬季冰雪覆盖面积为m,从2010年起,经过x年后,北冰洋冬季冰雪覆盖面积y与x的函数关系式是 ()A.y=0.95·m B.y=(1-0.05)·m

C.y=0.9550-x·m D.y=(1-0.0550-x)·m[答案] A

[解析] 设每年减少的百分比为a,由在50年内减少5%,得(1-a)50=1-5%=95%,即a=1-(95%)..

所以,经过x年后,y与x的函数关系式为y=m·(1-a)x=m·(95%)=(0.95) ·m.2.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物.已知该动物繁殖数量y(只)与引入时间x(年)的关系为y=alog2(x 1),若该动物在引入一年后的数量为100,则到第7年它们的数量为()

A.300 B.400

C.600 D.700

[答案] A

[解析] 将x=1,y=100代入y=alog2(x 1)中,得100=alog2(1 1),解得a=100,则y=100log2(x 1),所以当x=7时,y=100log2(7 1)=300,故选A.

3.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机平均每次降价的百分率是()

A.10% B.15%

C.18% D.20%

[答案] D

[解析] 设平均每次降价的百分率为x,则2000(1-x)2=1280,所以x=20%,故选D.读懂题意正确建立函数模型,求解可得.

4.(2013~2015学年度广东广雅中学高一月考)抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽(参考数据:lg2≈0.3010)()

A.6次 B.7次

C.8次 D.9次

[答案] C

[解析] 本题考查对数函数的应用.设至少抽x次可使容器内的空气少于原来的0.1%,则(1-60%)x<0.1%,即0.4x<0.001,xlg0.4<-3,x>=≈7.5,故选C.

二、填空题

5.如图,由桶1向桶2输水,开始时,桶1有a L水,t min后,剩余水y L满足函数关系y=ae-nt,那么桶2的水就是y=a-ae-nt.假设经过5 min,桶1和桶2的水相等,则再过________min,桶1中的水只有L.

[答案] 10

[解析] 由题意可得,经过5 min时,ae-5n=,n= ln2,那么,所以t=15,从而再经过10min后,桶1中的水只有L

6.一种产品的成本原来是a元,在今后m年内,计划使成本平均每年比上一年降低p%,则成本y随经过的年数x变化的函数关系为________.

[答案] y=a(1-p%)x(xN*,且x≤m)

[解析] 成本经过x年降低到y元,则

y=a(1-p%)x(xN*,且x≤m).

三、解答题

7.地震的震级R与地震释放的能量E的关系为R=(lg E-11.4).据报道中国青海玉树2010年4月14日发生地震的震级为7.1级.而2011年3月11日,日本发生9.0级地震,那么9.0级地震释放的能量是7.1级地震的多少倍(精确到1)?

[解析] 9.0级地震所释放的能量为E1,7.1级地震所释放的能量为E2,

由9.0=(lg E1-11.4),得lg E1=×9.0 11.4=24.9.

同理可得lg E2=×7.1 11.4=22.05,从而lg E1-lg E2=24.9-22.05=2.85,故lg E1-lg E2=lg=2.85,则=102.85≈708,

即9.0级地震释放的能量是7.1级地震的708倍.

8.对于5年可成材的树木,在此期间的年生长率为18%,以后的年生长率为10%.树木成材后,即可出售,然后重新栽树木;也可以让其继续生长.问:哪一种方案可获得较大的木材量(注:只需考虑10年的情形)?

[解析] 设新树苗的木材量为Q,则10年后有两种结果:

连续生长10年,木材量N=Q(1 18%)5(1 10%)5;

生长5年后重新栽树木,木材量M=2Q(1 18%)5.

则=.

(1 10%)5≈1.61<2,>1,即M>N.

因此,生长5年后重新栽树木可获得较大的木材量.

9.某个体经营者把开始六个月试销A,B两种商品的逐月投资与所获纯利润列成下表:

投资A商品金额(万元)123456获纯利润(万元)0.651.391.8521.841.40投资B商品金额(万元)123456获纯利润(万元)0.250.490.7611.261.51该经营者准备下月投入12万元经营这两种产品,但不知投入A,B两种商品各多少万元才合算.请你帮助确定一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).

[解析] 以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示:

观察散点图可以看出:A种商品的所获纯利润y与投资额x之间的变化规律可以用二次函数模型进行模拟,如图所示:

取(4,2)为最高点,则y=a(x-4)2 2.

把点(1,0.65)代入,得0.65=a(1-4)2 2,

解得a=-0.15.所以y=-0.15(x-4)2 2.

B种商品所获纯利润y与投资额x之间的变化规律是线性的,可用一次函数模型模拟,如图所示:

设y=kx b,取点(1,0.25)和(4,1)代入,

得,解得.所以y=0.25x.

即前6个月所获纯利润y关于月投资A种商品的金额x的函数关系式是y=-0.15(x-4)2 2;前6个月所获纯利润y关于月投资B种商品的金额x的函数关系式是y=0.25x.设下月投入A,B两种商品的资金分别为xA,xB(万元),总利润为W(万元),

则,

所以W=-0.15(xA-)2 0.15×()2 2.6,

当xA=≈3.2(万元)时,W取最大值,约为4.1万元.此时xB≈8.8(万元).

即该经营者下月把12万元中的3.2万元投资A种商品,8.8万元投资B种商品,可获得最大利润约为4.1万元.

weinxin
我的微信
关注我了解更多内容

发表评论

目前评论: